روش ابتكارى كاشانى در محاسبه عدد ("پی") و جايگاه آن در تاريخ رياضيات

يان هوخندايك

ترجمهُ رضاعليزاده مهقانى "

كانشانى براى محاسبه بی روشى كاملاًا ابتكارى كثنف كرد و براي نخستين بار اين عدد را را با

> داشت بحنى است كه به نظر يات نجومى زمان او بر میكردد.
 مساوى Y\&TYA برابر شعاع زمين در نظر كرفته شده بود.

كليد وازْها غياثالدين جمشيد. كاشانى، عدد يك، شعاع جهان: بطلميوس: ارشميدس: ابوالوفاى بوزجانى، ون كيولن

مقدمه

 اسلامى است مورد نحليل قرار هى ميرد د.

 لودلف ون كيولن دربارة عدد آانجام مى شود.

 از آنجانى كه جزئبات زندكانى كاشانى برخوانتدكان آشكار است ما از اين مطلب جشْم میبوشيم.

رسالة اللحجطية كه آنرا به عربى نوشته است انجام داده است.

 بتاريخ نيمه ماه شعبان سال AYY هـ ـ ق. كتابت يافته است. ها

بدين ترتيب كاشانى بايستى اين رساله را هنكام اقامت خود
تدوين كرده باشد.
 A.P Yousclikevitch, B. A. Rosenfeld, article: AI - Kashi, in: C.G. Gillispie,ed. Dictionary of scientific Biography, vol. 7: New York, Scribner's Sons, 1973, pp. 255-262.

هتعددى را به علاثم دهدهی نما يانده شدهاند. (نماد π در زمان كاشانى هنوز مورد استفاده نبود) كاشانى در سطر ينجِم هی نويسل:

$\Delta \times r \pi=1 \cdot \pi=r$ /F109 rgors ^qVarro

 صشحح عدد ثادر است با روش محاسبه كاشاني عدد آرا حتى با IV رقم اعشار هم دحاسبه كند.

和保

ابداع شده بود.

بتابراين بسيار مسرت بخش استى بدانيم كه دكتر وحيدى اصل از تهران در حال كار به روى

 به قالم خود مؤلف بسبار كم بابنذل

 تو حd به نسخه خططى رسالة هح. عنوان ایجدول هضنارب نسبت
10. D.E. Smith, History of Mathematics, 2 vols., 1923-105, Reprint ed.: New York: Dover, 1958, Vol. 2. pp. 240. 242.
11. Paul Luckey, Der Lehrbrifuber den Kerisumfang (ar - risāla al-multhitya) von Gैamsid b.
 on the Circumference of the Circle by... al-Kasi, translation and commentary by P.Luckey, (Arabic text) edited by A.Siggel], Berlin 1953: Abhandlungen der deutschen Akademie der Wissenschaften zu Brelin, Klasse für Mathematik und algemeine Naturwissenschaften, Jahragang $1950 \mathrm{no}, 6$.
12. Dzhemshid Giyaseddin al-Kashi, Khuch Arifnetikd, Traktat ab Okruzinosti [Key toArithmetics, Treatise on the Circumference]. Per B.A. Rozelfeld, comm. A.P. Yuschkevitch, B.A. Rozenfeld, Moskva: Gosudarstvennoe lzdatelstvo, 1956. 13. See Qorbäní 1350, op, cit.
14. David H.Bailey, Jonathan M. Borwein, Peter B. Borwein, Simon Plouffle, The Quest for Pi, Mathematical Intelligencer 19 (1997), no. 1,pp 50 - 57.

بسبارى از فلاسفةُ يونانى بذير بته بودند كه فضاى خالى (خلأ) وجود ندارد و بنابراين جنين

تخصبنى ب..... برابر شُعاع زمين باشد.
 بطليهوسى را تغيبر دادند ولى شعاع جهان را با همان مقدارى كه از نـظر يه بـطليموسى تـعيين میی.

 سالها اخترشناسان را قادر ساختند كه بـديدههاى سماوى را با دقتى كافى براى جشثم غير مسلح
بيس بينى كنند.

 جيزى كتبر از قطر يك نار مو باشند.
 دايرهاى با 9 ضلعى هاى منتظم محاطى و محبطى در نظر كر كرفت.

لامبرت 10 اثبات شد. از آنجايى كه عدد π هتوز به طور دقيق مـحاسبه نشده است است، بـتابرايسن

 بطليموس بر اين باور بود كه زمين در مركز جهان قرار دارد و وتوسط افلاكى (دواير) هم مركز

 . $1 / r$ مقدار واقعى نشان ميداد.

|-
15.J. Lennart Berggren, J. Borwein, P. Borwein, Pi: A Source Book. New York: Springer Veriag. 1997, 2nd edition 2000. pp, 141 - 6.
16. Olaf Pedersen, A Sumuey of the Almagest. Odense: Odense University Press, 1974.

 بين از آغاز كار اصلى، كاشانى امور زير را نشان دان داد: محبط

- محيط

شعاع زمين. اختلافى كمتر از فطر بكى تار مو دارند.

شنصتانى به دست میدهـ. (يك عدد صحيح و اA كسر)

 $C_{n}=1 r_{0} \cdot \cos 1 人 \cdot / n$

به دلِل آنكه اين مقادير با رابطهى زير به هم مربوطاند: $C_{r n}=\sqrt{4 \cdot\left(1 r_{0}+C_{n}\right)}$
كه با روابط امروزى هم ارزند با فرهول: $(r \cos \alpha / r)^{r}=(r+r \cos \alpha)$
بدين ترتبب كاشانى در دستکاه روابط امروزی، جنين محاسبه كرد $C_{r}=9 \cdot \sqrt{r}, C_{4}=9 \cdot \sqrt{r+\sqrt{r}}, C_{1 r}=\varphi \cdot \sqrt{r+\sqrt{r+\sqrt{r \ldots \ldots}}}$

$$
\begin{aligned}
& \text { خ خ }+\sqrt{ } r \text { r } \\
& r<\pi<r \sqrt{r} \quad \varepsilon<r \pi<\mu \sqrt{r}
\end{aligned}
$$

$$
r \frac{1}{V 1}<\pi<r \frac{1}{V}
$$

 كانتانى به تقريب ارشميدس توجه كرد و اضاقه نمود كه نتيجة ارشمبدس بـراى مـنظور او
T. L. Heath, The Works of Archimedes, Cambridge: University Press, 1897, reprint ed. New York: Dover, no date. pp. 93-94.

با
$r_{X Y^{r A}} \times \sqrt{1 r^{r}-C_{r}^{r}{ }_{r \times r}^{r A}}$
سیس او هحبط جند ضلعى محيطى را به روش سادمای استخراج كرد. در اين روسّ او حــ

9:19.09...-9+19/9.+ $\Delta 9 / 9 .{ }^{r}+\ldots$
در ابتدا كاشاني عدد 4 با با به عنوان آخرين حد بايبن شصت كانى بيداكرد ولى او هكان

كسيت هاي دهدهیى تبدل كرد. همان طور كه ما ديدبم او تنها 19 ر فقم اعشار را به دست آورد ولى طبق هحاسبات لوكى بيش از اين میتوان عمل كرد: اكر كسى r ر رقم بيشتر استفاده كند, حدود الضاقى , انتصانى $\mathrm{H} \pi$ طبق محاسبات كاشانى معادل خواهند بود با:

 π-r/IF109 rgorロ 人9Y9r YF

كـاشانى جــولى از مـضارب r Y را الرائهـ داد و در مـورد خـطاى تـقريب عـدد π تـوسط رباضبدانان متقدم همحون بوزجانى و ببرونى بحث نمود. آن طور كه از مطالعةُ جداول مثلثاتى الين رياضيدانان بر میآيد، آنان با تقر بب نسبتاً كم دقتى عدد π را بافته بودند. با الـن مـطالعه تطبقيى. رسالة هحيطهد كاشانى بايان مى يابد.
(جدول r در بايين را بيبنيد).

به هنظور تعيين كار كاشانى در شرابط تاريخ جهانى ريـاضيات، هسن فـهرستى از ركودهاى
جهانى در تقريب اعشارعدد π تنظيم كرد دام ما (جدول 1)

شكل 9 محاسبة) $\sqrt{\left(r \times G \cdot{ }^{\top}\right)}=1 / F K: \Delta \Delta, Y T, \Delta A, Y V, \Delta V, \Delta G, F F, T \Delta, Y 1, F Y$ $\Delta 9$.TY.FT FA $\Delta \mathrm{A} . \Delta \mathrm{V}=1 \times 9 \cdot+\mathrm{Fr}+\Delta \Delta / 9 \cdot+$ YK/G. $\mathrm{F}+\ldots$

به معنای: [در سيستم دهدهى]

تكل 9

r.ro		隹	$19+4$
$1 .{ }^{9}$	\%		19 Vr
1.9	نيوبررك	برادرانهانجانج.	19.19
rxa. ${ }^{11}$	21	1565	1999

اللته دارندکان اين ركودهاى جهانى نبايستى از كارهاى اسلافشان مطلع بوده باشند. كاشانى از كار

حساب و كامبيوتر میباشند.|
تثر يب π با جند ضلعى هاى متنظمر.

تعداد اعنّار	مكان	مؤلف	ناربح
Q7 $=r \times 2^{\circ}$		隹	
ry.	rAT." $=$ r/1+99	10.	
98.197	r/if		Tr.
هنقو	r/ifls	-	to.
2,	$r / 1+109 r 9<\pi<1+109 r y$	¢رج	* 1 .
		بوزجانى	9A.
11.	rír." $1 v^{\prime \prime \prime}=$ r/ifiv...	بير220	$1 . r 0$
$19.10 \lambda^{\prime}=r^{17}$	r/1F190r9< $<$ <r/1F109ry	زائوبركين	$1 r$.
		كإنانى	Ifyr
rar.ris $=$ rer ${ }^{\text {IV }}$	r/ifloargors	\%	1089

 .

(r) \$1 آيسه بيرات وبئ: تاربح علم

[^0]كه محاسبات حداقل بايد نا Yk اعشار انجام شوند لودلف ون كيولن آخرين ركورددار جهانى بود

 انجام داد. تقريب هז رفم اعشار براى عدد π دشوارتر از آن بوده است كه محاسبهاش توسط يك فرد انجام بذيرفته باشد.

 منخخصه يافت.
روش مشابهى هم توسط رياضيدان اتريشى،كريمبر و همجنين رياضيدان زإينى به نام تاكه به
.كه كه از كارهای اسلاف يونانى. هسلمان و اروبايى آكاه نبود ـ استفاده شد.

 رياضبدان انگّليسى شارب. از سرى زير استفاده كرد: $\pi / \&=\arctan 1 / \sqrt{r}=\frac{1}{\sqrt{r}}\left(1-\frac{1}{r \cdot r}+\frac{1}{0 \cdot r^{r}} \cdots\right)$

به زودى ماشين. رابطة مؤثر ترين را جايكزين كرد:
$\pi / \mathrm{f}=\mathrm{Farctan} 1 / 0$ - arctan $1 / \mathrm{rrq}$
$=r\left(\frac{1}{r} \frac{1}{r \cdot \Delta^{r}}+\frac{1}{\Delta \cdot \Delta^{0}}+\ldots\right)-\left(\frac{1}{r r^{q}}-\frac{1}{r \cdot r r^{q}}+\frac{1}{\Delta \cdot r r^{2 D}} \ldots\right)$
توسط اين سرى ها و روابط مشابه، اروبائبان قادر شدند عدد ار را با . 0 رقم اعشار صحبح
محاسبه كنند. بيشرفت بيشتر به توسط ماشين حسابها و كاميبوتر ها بس از از جنا
 ميلبون اعشار عدد π شناخته شده است. اين محاسبات جنبه عملى كمترى دارينـــ امـا امـا نـظرية اصولى جالب است و تعدادى از رياضيدانان علاقمند به جستجوى خواص عدد آ در ارتباط با تتسيم ثابت اعشار آن مى باشد.

$\Gamma / r p(n)+1 / r P(n)-r \pi \approx \pi^{0} / 1 \cdot n^{\dagger} \approx r \cdot / n^{\dagger}$

جدول r يكى فهر ست از رياضبدانانى است (البنه نه همه ركوردداران جهانى) كه عدد آر ارا با

 عيانگين جند ضلعى هاى منتظم هحاطى و محبطى تقريب زده شود. خطا متناسب با

جنانجه تخمين عدد آبراى حصول k رقم اعشار با اين روش انجامبذيرد، میتوان نشان داد
 !
$\mathrm{Tn} \sin \pi / \mathrm{T}=\mathrm{p}(\mathrm{n})<\mathrm{T} \pi<\mathrm{P}(\mathrm{n})=\mathrm{Tn} \tan \pi / \mathrm{n}$
$\sin x=x=1 / \tau!x^{r}+1 / \Delta!x^{\Delta} \ldots$

$\tan x=x-1 / 2 x^{r}+\pi / 10 x^{2}$

$\mathrm{n} \sin \pi / \mathrm{n} \approx \pi \cdot \pi^{r} / 9 \pi^{\dagger}+\Delta^{0} / \overline{\mathrm{r}} \cdot \mathrm{n}^{\dagger}$
$\mathrm{n} \tan \pi / \mathrm{n} \approx \pi+\pi^{\top} / r \mathrm{n}^{\top}+r \pi \mathrm{n}^{\mathrm{D}} / 1 \Delta \mathrm{n}^{\dagger}(\mathrm{n} \rightarrow \infty)$
,

 قربانى "ٓ اين انتقال , اا از اروبا به جهان اسلام همجون رخدادى به نشانها بايان دورأ ريـاضيات فرون وسطاثي اسلام قلمداد مىكند.

 زيادى را صرف رد اين اظهارات نمودند و اين جنين بود كه آنها اعشار بيشتر و بـيشترى از

بی رباضبات محاسباتى يك بيسْرو بود.

هكعب بيان مىكند.

برخلاف كانانى، ون كيولن تهام محاسباتش را در دستگاه دهدهی انجام داد و دايـرـراي بـه
 رنسانس در اروبا بِششرفت نموده بودند. شكل 9 همحنين فهر ستى از تعداد اضنلاع n
 جتد ضألى هاى مشابه همجنين توسط كاشانى مورد استفاده قرار كرفت. با دو برابر كردن كا آخرين

من در بخش سوم از اين مقاله نمايل دارم كه به طور خلاصه رساله هـيطئ كاشانى را باكار.

> بود كه در حال حاضر مورد نظر ما نبست.

 ^ا. عدد زير از محاسبات ون كيولن:
199999999999999999AFVA Ir.rV • Arq. . YIVrVV.r
;بر در سيستم شَصتكانى:

و هشتمين رقم محاسبه استخراح كرده است.

 Y. محاسبة رقم اعشار به دست مىداد.

 هحمدباقر بزدى ادامه میدهد كه: (شخخصى ديكر با هداساتى دقيقتر بر به اين نتيجه رسيده است
22. Luodolph van Ceulen, Vanden Cirkel [ربار; دابر2])] Delft: Jan Andriesz, 1596.
23. Van Ceulen 1596 op. Cit. 14.

707106811865475244008443621048490 ．
 ：124744871391589049098642037352945720 98288972174762082228911 SOS385712564 ${ }^{1995717846477207013476: 3958254555520 ~}$ $199^{8919174952731288859671891485719 . ~}$ 19997321758191235657254942981201998 。 19799330678348022069152076211582781 r． ${ }^{1999983266888701298295172415376694 * ~}$ 199999581671780036208332744865370094 $19999989541791766552221964749280281_{2}$ ${ }^{1} 99999973^{8} 8447770740971$ 503 103434821_{7} 19999999346361931004174777442982778。 199999998365904823334769327606018332 19999999959147620541646310504917746。 19999299989786gos 132803894957.070750 19999992997446716283037993572424165－－ ${ }^{199999999993616815707493121316780894 ~}$ $19999999999^{8404103916866913918927654}$ $1999999999996010509817,1633057893393$. 199999999999900261745419057775931614 19999999999997 506568635726288968341。 1999999999999937664215893：562527710． 1999999999999984416053273289001477929． 1999999999999996104013493321246814804。 199999999999999902600337333056r4690336． 199999999999999975650084333264035243543. 199999999999999993911521083316008718242． 1999999999999999984781301708290011737702． 1999999999999999996195325677071505430806 ． 1999999999999－9リ9999048831419268126357451。 199999999999999999976120785481703 ：589348．
 100000000000000000000000000000000000000
 106000000000000000000000000000000000000

Bub 9 999999999999999999048831419268126357451

tyeft met oals Bit meft is bet Quabzatt Der fpoe tener figuet in ben Circkelgberflyevern ban 6442450944 yourken．

$$
r \times r^{r A}=\lambda \cdot \Delta r \cdot g r \& \wedge
$$

مى آور بـم بیثى:
Finath.
$\sqrt{3}$
$\sqrt{1-1} \sqrt{3}$. ©fte $\sqrt{1}+\sqrt{1}$

$\sqrt{.1-\sqrt{ } \cdot 2+\sqrt{.1}+\sqrt{3} \text {. }}$
$\sqrt{2}-\sqrt{1}+\sqrt{2}+\sqrt{2}+\sqrt{ }$.
$\sqrt{2}-\sqrt{.2}+\sqrt{.2}+\sqrt{.2}+\sqrt{3}$
$\sqrt{21}-\sqrt{.2}+\sqrt{.2}+\sqrt{.2}+\sqrt{.2}+\sqrt{3}$
$\sqrt{2}-\sqrt{.2}+\sqrt{.2}+\sqrt{.2}+\sqrt{.2}+\sqrt{3}$
$\sqrt{.2-\sqrt{.2}+\sqrt{.2}+\sqrt{.2}+\sqrt{.2}+\sqrt{2}+\sqrt{3} .}$
$\sqrt{.1-\sqrt{1}}+2+\sqrt{-2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{5}$
$\sqrt{ } \cdot x-\sqrt{1}+\sqrt{ } \cdot 2+\sqrt{2} \cdot 2+\sqrt{ } \cdot 2+\sqrt{-2}+\sqrt{ } \cdot 2+\sqrt{ } \cdot 2+\sqrt{3} 0$

$\sqrt{\cdot 1} \cdot \sqrt{.2}+\sqrt{\cdot 2}+\sqrt{\cdot 2}+\sqrt{\cdot 2}+\sqrt{\cdot 2}+\sqrt{2}+\sqrt{ } \cdot 2+\sqrt{\cdot 1}+\sqrt{\cdot 2}+\sqrt{3}$

$\sqrt{2-} .{ }_{3}$
$+\sqrt{3}$.
$\sqrt{02} \sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{ } \cdot 2+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}$
$+\sqrt{-2}+\sqrt{3}$
$\sqrt{\cdot 2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{12}+\sqrt{ } \cdot 2+\sqrt{ } \cdot 2+\sqrt{02}+\sqrt{2}+\sqrt{02}+\sqrt{02}$
$+\sqrt{ } \cdot 2+\sqrt{-2}+\sqrt{3}$.
$\sqrt{2} \cdot \sqrt{ }, 2+\sqrt{0.2}+\sqrt{ } \cdot 2+\sqrt{.2}+\sqrt{ } \cdot 2+\sqrt{2}+\sqrt{ } \cdot 2+\sqrt{ } \cdot 2+\sqrt{2}+\sqrt{ } \cdot 2$
$+\sqrt{.2}+\sqrt{.2}+\sqrt{\cdot 2}+\sqrt{3}$

$+\sqrt{ } \cdot 2+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{3}$
$\sqrt{ } \cdot 2-\sqrt{ } \cdot 2+\sqrt{ } \cdot 2+\sqrt{.2}+\sqrt{\cdot 2}+\sqrt{\cdot 2}+\sqrt{\cdot 2}+\sqrt{\cdot 1}+\sqrt{ } \cdot 2+\sqrt{\cdot 2}+\sqrt{ } \cdot 2$
$+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{-2}+\sqrt{3}$

$1+\sqrt{1}+\sqrt{ } \cdot 1+\sqrt{. a}+\sqrt{.1}+\sqrt{ } \cdot 2+\sqrt{ } \cdot 2+\sqrt{3}$.
$\sqrt{\cdot 2}-\sqrt{.2}+\sqrt{\cdot 2}+\sqrt{\cdot 2}+\sqrt{\cdot 2}+\sqrt{\cdot 2}+\sqrt{.2}+\sqrt{\cdot 2}+\sqrt{2}+\sqrt{.2}+\sqrt{ } \cdot 2$
$+\sqrt{2}+\sqrt{{ }_{2}}+\sqrt{2}+\sqrt{{ }^{2}}+\sqrt{{ }^{2}}+\sqrt{2}+\sqrt{2}+\sqrt{3}$.
$\sqrt{2}=\sqrt{n}+\sqrt{2}+\sqrt{2}+\sqrt{n+2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{n}+\sqrt{n}+\sqrt{ } \cdot 1$
$+\sqrt{2}+\sqrt{ }+\sqrt{2}+\sqrt{ } \cdot 2+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{3}+\sqrt{2}$
6291456
122^{82911}
${ }^{25165814}$
50331648
10066,3296
201316592
402633184

 سخنرانی تاريخى برفسور هiكى باس

هیاسبةُ هحيط
شعاع هربوطه:

> فر
a = bول جنا
b = bول جند ضا
R R انتعاع داير
h ارتفاع وارد بر فنلع محاطى و محيطى برابر باشلد با R R R R R R
$\sin \alpha=a / r R=a / ヶ R \rightarrow a=r R \sin 1 \Lambda \cdot / n R=r \cdot \rightarrow=1 r \cdot \sin 1 \Lambda \cdot / n$
$\operatorname{tg} \alpha=\mathrm{b} / \mathrm{R}=\mathrm{b} /\ulcorner\mathrm{R} \rightarrow \mathrm{b}=r \mathrm{R} \operatorname{tag}|\Lambda \cdot / \mathrm{n} \rightarrow \mathrm{b}=1 \Gamma \cdot \operatorname{tg}| \Lambda \cdot / \mathrm{n}$
$\cos \alpha=h / R \rightarrow h=R \cos \left|\lambda \cdot / \mathrm{n} \rightarrow \mathrm{r} h=|r \cdot \cos | \lambda \cdot / \mathrm{n}=\mathrm{C}_{\mathrm{n}}\right|$

اين امر در تساوى مثلثاتى زير نهفته بود:
26. Henk J.M. Bos, De cirkel gedeeld, de omtrek becijferd en pi gebeiteld: Ludolph van Ceulen en de uitdaging van de wishunde [The Circle Divided, the Circumference Computed, and Pi Engraved: Ludolph van Ceulen and the Challenge of Mathematics], Nieuw Archief voor Wiskaunde, 5. Series. 1 (Sept. 2000), pp, 259 - 262.

هحاسبات ون كيولن نشان میدهـد كه از جهارمين تا بِست و هشتمين قـدم بـا هـحاسبات
كاشانى مشابه هستند.
كاشانى به ترتيب روبرو محاسباتش را انجام داد:

$$
\mathrm{n}=r \cdot s \cdot I r \cdot f \mathcal{A} . \ldots . r_{\times r}{ }^{r A}
$$

$$
C_{\mathrm{n}} \tilde{=}=1 r \cdot \cos 1 \Lambda \cdot / n \cdot C_{r n}=\sqrt{\varepsilon \cdot\left(1 r \cdot+C_{n}\right)}
$$

كه مقدار Cn عبارت بود از:
و در مورد ون كبولن به قرار زير بود:
$n=r r . r \lambda \ldots r_{\times r}^{r \mid}$
$C_{n}^{\tilde{n}}=r \cos 1 \lambda \cdot / n, C_{r n}=\sqrt{r r+\widetilde{C}_{n}}$

$$
C_{n}=9 \cdot C_{n}^{\sim} \tilde{4}
$$

25. Reproduced from R.M. Th. Oomes, J.J.T.M. Tersteeg, J. Top, Het grafschrift van Ludolph van Ceulen [The inscription on the Tomb of Ludolph van Ceulen]. Nicaw Archief voor Wiskunde Se serie, 1 (2000), p. 159.

> شـك
> T0 10 ربرط بـ فرن هجر

(r) (r آينه مبراث ويرة: ناريخ علم

مختلفى هستند و بر همين اساس بسط مك لورن تابع $\operatorname{tg}^{-1} \mathrm{C}$ بارت خواهد بود از:

كه شارب از رابطه اخير براى تقريب عدد תاستفاده كرده بود: بدين ترتيب كه با جايكذارى

$$
\pi / \varphi=\operatorname{tg}^{-1} \sqrt{r}=\sqrt{r(1-1 / r \times r+1 / \Delta \times r \cdot \ldots .)} \text { عدد } \pi \text { باه جاى متغير x به مقدار زير دست }
$$

سير تاريخى روش شناسى تقريب عدد

به شرح جدول زبر تقسبيم بندى نمود:
ادوار كوناكون تقريب عدد π لحاظ روش رشناسى:

حد نهايعى اعشارحاصل	بازه زمانى	روش	نام دور
1	م.eror-p.er...		
+1	plrrt-p.ero.	الثناء	,
A-A	plars-pla99	سرى تبلور	r
rex. ${ }^{11}$		كامبيونرى	**.

 است كه ريشه در علوم باستانى دار ند ولى دورة دوم علمى كه معارن بان با عصر روشنَكرى و آغاز
 تيلور و مكا لورن را عرضه میدارند و بالاخره دورأ جهارم عـصرى است كـا كـه از تكـروى عـلوم نشانى به جا نمانده است. بدين معنا كه اثتلافى از علم و فن در در محاسبات شا شكا

$\cos (a+b)=\cos a \cos b-\sin a \sin b \rightarrow$
$\cos r \alpha=\cos ^{\top} \alpha-\sin ^{\top} \alpha \rightarrow$

$$
\text { rcos } \alpha=\sqrt{4 \cdot\left(\mid r \cdot+C_{n}\right)}: r \text { ال از } r \text {, } 1 \text { اروابط }
$$

 محاطى P^{1}

ك كاشانى محيط اعشار محاسبه میكند.

ضميهر
 معرفى سرى تيلور

سرى تيلور مبحئى در رياضيات سريهاى توانى است كه قضية مربوط به آن به شـرَ زُبـ است:
تابعى در فاصلة X X - R $<$ و بى نهابت بار مشتقبذير، قابل تبديل به سرى
توانى زير است: (سرى تيلور)
$\left.f(x)={ }_{0}\right)+f^{\prime}\left(x_{0}\right) / 1!\left(x-x_{0}\right)+f^{\prime}\left(x_{0}\right) / r!\left(x-x_{0}\right)^{\varphi}+\ldots+f^{(n)}\left(x_{0}\right) / n!\left(x-x_{0}\right)^{n}+\ldots$
$f(x$

$C=x_{0}+\theta\left(x-x_{0}\right) \cdot<\theta<1$
Rn(x : باقيمانده فرمول تيلور
 $x_{0}=\quad f(x)=f(0)+f^{\prime}(0) / 1!x+f^{\prime}(0) / Y!X^{\varphi}+\ldots$
تظر به سرى مك لورن، توابع باية مثلثاتى از قبيل (هاه

روش كاشانى براى محاسبه قوسها

ايونه دولد سملولنيوس


```
ترجمه:: على رضا اشرفى 
```


و

اين ترجشه را بـ دوست دانشُندم جناب آقاى دكتر جعفر آقايانى جاوشى نقديم مىدارم. ارعلى

جهارمين بخش از كتاب مفتاح الحساب كاشانى به اندازهكيرى شكلها و اششاء هندسى مربوط

 دقيق علمى قرار مىدهد و با روشى كاملاً علمى به مداسبه آنها مییبر دازد.

دوران بنجمى هم حاصل شود: هرجثند كه ابِن امر , فعلاً خبلى بعبد به نظر برسـ.

ترجمه بخشى از مقدمهى رسالةٌ محيطيه

بسم اللّه الرحمن الرحيم
ستابش خداوندى را سزد كه از نسبت فطر به محيط آكاه است. و اندازة هر مركب و بسيط را

باكى او باد.
اما بعد نيازمندترين بندگان خداى نعالى به آمرزش وى جمشيد بسر مسعود بسر مـحمود حذف طبيب كاشانى ملقب به غياث كه خداوند احوال او را نيكو كردانـد مـى مويد: مإرشـمـيدس

 (j FVV قطر آن برحسب فرسنگ تقريباً بنج برابر مقدار مذكور میباشد و در فلك البروج (در محيط ...)
 زباد هستند در مساحت (ها) جه خواهند بود؟ اين به عـلت آن است كهه وى (= ارشسـميدس)
 زبرا هر ضاع آن از قوس روبروى آن كوحكتر است و مجموع اضلاع آن از هحبط داير انو كوجكتر هی باششد و (ارشهيدس) هحيط جند ضلعى ديكُرى را كه مشابه با اولى و محيط بر (همان) دايره
 از محبط دايره مذكور بزرُكتر است و تفاوت بين آنها (= در محيط) همان است است كه كفته شد.

[^0]: F - كالهيو ترهاي اتوماتبك

